Grayanotoxin opens Na channels from inside the squid axonal membrane.

نویسندگان

  • I Seyama
  • K Yamada
  • R Kato
  • T Masutani
  • M Hamada
چکیده

External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alpha-H2-GTX II does not occur either with the carrier-mediated system or through the pores of the Na channel. The finding that the most hydrophilic grayanotoxin analogue, desacyl asebotoxin VII, is effective only when applied internally, strongly suggests that the receptor for grayanotoxin does not exist on the external surface of the membrane. The linear relationship between the concentration of [3H]alpha-H2-GTX II in the external medium and the count in the effluent from the perfused axon indicates that GTX II diffuses through the cell membrane's lipid phase and reaches the site of action only approached from the internal medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of K conductance of the squid axon membrane by SITS

The effects of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) on the K conductance, gK, were studied in internally perfused giant axons from squid, Doryteuthis. SITS at 3-200 microM was applied intracellularly by adding the reagent to the internal perfusion fluid. Three remarkable changes in gK were noted: there was a slowing of the opening and closing rates of the K channel in...

متن کامل

Spatial localization of calcium channels in giant fiber lobe neurons of the squid (Loligo opalescens).

Whole-cell voltage clamp was used to investigate the properties and spatial distribution of fast-deactivating (FD) Ca channels in squid giant fiber lobe (GFL) neurons. Squid FD Ca channels are reversibly blocked by the spider toxin omega-Agatoxin IVA with an IC50 of 240-420 nM with no effect on the kinetics of Ca channel gating. Channels with very similar properties are expressed in both somati...

متن کامل

Properties of appropriately and inappropriately expressed sodium channels in squid giant axon and its somata.

Neurons that form the giant axons in squid by axonal fusion in the stellate ganglion are inexcitable and do not express functional voltage-controlled sodium (Na) channels in their somata in vivo. These cells do express Na channels in the soma membrane in vitro, however, provided they have been axotomized. We describe here voltage-clamp experiments on the isolated cell bodies maintained in prima...

متن کامل

Grayanotoxin, veratrine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers

The actions of grayanotoxin I, veratrine, and tetrodotoxin on the membrane potential of the Schwann cell were studied in the giant nerve fiber of the squid Sepioteuthis sepioidea. Schwann cells of intact nerve fibers and Schwann cells attached to axons cut lengthwise over several millimeters were utilized. The axon membrane potential in the intact nerve fibers was also monitored. The effects of...

متن کامل

On site of action of grayanotoxin in domain 4 segment 6 of rat skeletal muscle sodium channel.

Grayanotoxin I (GTX I) is a diterpenoid extracted from the family of Ericaceae that binds to Na(+) channels and causes persistent activation. We investigated the interaction of GTX I with the amino acid residues I1575, F1579 and Y1586 in transmembrane segment D4S6 of micro1. In F1579A, GTX shifted the threshold potential about 50 mV in the hyperpolarizing direction and modified Na(+) channels t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 1988